POPULATION GENOMIC ANALYSES OF THE BROWN ROOT-ROT PATHOGEN (*PELLINUS NOXIOUS*): EXAMINING POTENTIAL INVASIVE SPREAD AMONG PACIFIC ISLANDS

Jane E. Stewart¹, Mee-Sook Kim², Louise Shuey³, Norio Sahashi⁴, Yuko Ota⁴, Robert L. Schlub⁵, Phil G. Cannon⁶, and Ned B. Klopfenstein⁷

INTRODUCTION

*Phellinus noxius* (Corner) G. H. Cunn is a vastly destructive, fast-growing fungal pathogen that affects a wide range of woody hosts in pan-tropical areas, including Asia, Australia, Africa, and Oceania (Ann et al. 2002; Figure 1). This pathogen causes brown root-rot disease on cacao, coffee, and rubber, as well as diverse fruit, nut, ornamental, and other native/exotic trees, with little indication of host specificity (Sahashi et al. 2010). Pathogenic symptoms of *P. noxius* infection can include reduced tree growth, defoliation, and branch dieback; however, *P. noxius* can survive as a saprophyte by colonizing heartwood and/or other organic matter. Brown root-rot disease can develop over several years, or in some cases, *P. noxius* infection can cause tree mortality within a year. Understanding the genetic diversity and evolutionary history of *P. noxius* populations worldwide will help assess the evolutionary origins, worldwide movement, and potential ecological differences within *P. noxius*.

The objectives of this study are to:

1) estimate the worldwide genetic diversity and evolutionary history of *P. noxius* movement;

2) determine if populations of *P. noxius* from Pacific islands show genetic signatures of introduced populations; and

3) characterize *P. noxius* for climatic modeling efforts to determine geographic areas at risk from *P. noxius* introductions.

![Characteristic symptoms/signs of brown root rot caused by Phellinus noxius: mycelial crust (A) and mycelial mats and reddish-brown hyphal zone lines between the infected bark and sapwood (B).](image-url)
Figure 2. Preliminary results: Neighbor-joining of 1,449 SNPs within 396 loci. Isolates are color-coded by location.
METHODS

Isolates

A total of 56 isolates were included from Japan (4 isolates), Australia (19), and the Pacific islands including Saipan (5), Guam (10), Palau (4), Pohnpei (5), Kosrae (2).

Molecular characterization and analyses of molecular data

Sequence data were generated by Illumina sequencing of double-digest, reduced representation libraries (ddRAD). Restriction site associated DNA markers (RADseq), 3RAD design - Enzymes: BamHI, ClaI, MspI. RADseq loci were de-novo assembled, cataloged and analyzed in STACKS (Catchen et al. 2013). Pegas (Paradis 2010) (implemented in R) was used for neighbor-joining analyses (Figure 2).

RESULTS

Reads were assembled de-novo and grouped using STACKS (Catchen et al. 2013). A total of 24,142 total RAD loci were cataloged with 12,000 RAD loci per individual. The average depth per locus was 14x. Of the total RAD loci, 396 loci were used for analyses. These loci were found in 80% of the total 44 samples at a depth greater than 5x. We had a total of 50% missing data across the 396 loci for the 44 individuals. We recovered a total of 1,449 SNPs within the sampled population.

DISCUSSION AND FUTURE WORK

Preliminary results of the ddRAD single nucleotide polymorphism data show multiple genotypes of P. noxius that are structured geographically (Figure 2). Isolates from Pacific islands showed reduced levels of genetic diversity, which supports the hypothesis of potential introductions to some Pacific islands. Future research will include more populations from diverse geographic areas. Continued analyses will examine levels of gene flow among populations, examine potential pathways of spread, and predict the potential spread of specific genotypes related to the current and changing climates. This study is aimed toward performing a wide-scale, population-genetic study of P. noxius isolates from eastern Asia, Pacific islands, and Australia to determine the regional population structure, estimate diversity in recently observed populations, and assess the potential suitable climate space for specific genotypes.

REFERENCES


Proceedings of the 63rd Annual Western International Forest Disease Work Conference

September 21-25, 2015
Newport, Oregon
Proceedings of the 63rd Annual Western International Forest Disease Work Conference

Best Western Agate Beach Inn
Newport, Oregon, U.S.
September 21-25, 2015

Compiled by:
Amy Ramsey
Washington Department of Natural Resources
Olympia, Washington

and

Patsy Palacios
S.J. and Jessie E. Quinney Natural Resource Research Library
Quinney College of Natural Resources
Utah State University, Logan, Utah